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The exact solution of the acoustic wave equation in an unidirectional shear flow with a

parabolic velocity profile is obtained, representing sound propagation in a plane, parallel

walled duct, with two boundary layers over rigid or impedance walls. It is shown that

there are four cases, depending on the critical level(s) where the Doppler shifted

duct (case II); (ii) for propagation downstream there may be two (case IV), one (case I) or

no (case III) critical level inside the duct. The acoustic wave equation is transformed in

each of the four cases to particular forms of the extended hypergeometric equation, which

has power series solutions, some involving logarithmic singularities. In the cases where

critical levels occur, at real or ‘imaginary’ distance, matching of two or three pairs of

solutions, valid over regions each overlapping the next, is needed. The particular case of

the parabolic velocity profile is used to address general properties of sound in

unidirectional shear flows. For example, it is shown that for ducted shear flows, there

exist a pair of even and odd eigenfunctions, in the absence of critical levels. It is also

proved, in more than one instance, that there is no single set of eigenvalues and

eigenfunctions valid across one or two shear layers. This leads to the general conjecture,

considering the acoustics of shear flows in ducts, that critical levels separate regions with

distinct sets of eigenvalues and eigenfunctions.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The propagation of sound in shear flows is a major research area in aeroacoustics [1–10], relevant to the acoustics of
(i) shear flows and shear layers of jets [11–20]; (ii) boundary layer over walls [21–28]; (iii) duct and nozzles, including liners
and bends [29–52]. In the wake of turbines the flow may have swirl as well as shear [8,53–66]. The real shear layers, boundary
layers and wakes are often turbulent [67–71], leading to other acoustic phenomena, like spectral and directional broadening
[72–75].The common occurrence of turbulent shear flows is ascribed to the instabilities of laminar shear flows: the latter are
described by the same equations as for sound propagation, except that the frequency is taken to be real for sound waves, and
complex for instability waves. Although the acoustic wave equation in a unidirectional shear flow has been known for some
time [76–78], there are few exact solutions in the literature [79,66]. The simplest case of sound of in a mean flow with a linear
shear velocity profile, has been solved in terms of: (i) parabolic cylinder functions [80]; (ii) Whittaker functions [81,82];
(iii) confluent hypergeometric functions [83–85]; (iv) eigenfunctions even and odd relative to the critical layer, which always
exists for a linear shear flow [86]. The linear velocity profile has also been considered for isentropic non-homentropic
flow, implying the presence of temperature gradients [87]. A source has been considered outside an isothermal [81] and
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non-isothermal [88] shear flow. The linear shear velocity profile may be matched to uniform stream(s), to form boundary
layer and shear velocity profiles; the latter have ‘kinks’ at the junctions, corresponding to jumps of mean flow vorticity, which
may be unstable. Exact solutions of the acoustic wave equation in an unidirectional sheared mean flow with a smooth velocity
profile, hence continuous mean flow vorticity, have been obtained for: (i) the exponential velocity profile [89] representing a
boundary layer; (ii) the hyperbolic tangent velocity profile [90] representing a shear layer. The present paper gives the exact
solution for a parabolic velocity profile, including the two wall boundary layers in a plane, parallel walled duct.

The preceding solutions concern the linear, non-dissipative acoustic wave equation, and thus exclude viscosity [91],
whose effects on sound attenuation are comparable to thermal conduction [92] and relaxation [93]. Thus the sound
propagation in an exponential shear flow is not a perturbation of the asymptotic suction profile [94] and the sound
propagation in a parabolic shear flow is not a perturbation of Poiseuille flow. An important feature in the acoustics of shear
flows, is the occurrence of critical levels where the Doppler shifted frequency vanishes, corresponding to singularities of the
wave equation. Critical levels occur for a variety of waves in fluids [95–98], e.g. gravity [99], inertial [100], instability
[101,102] and hydromagnetic [103,104]. Critical levels also occur for atmospheric waves in the presence of dissipation, by
viscosity [105,106], thermal conduction [107–109], thermal radiation [110], and electrical resistance [111] as well as mean
flow [112]. The occurrence of critical levels, would separate the flow in regions with distinct sets of eigenvalues and
eigenfunctions, if Klein’s theorem did apply [113]; however, although the acoustic wave equation in an unidirectional shear
flow can be put in a self-adjoint form, neither the Klein nor the Sturm–Liouville theorems apply, because the wavenumber
appears not only in the ‘eigenvalues’ but also in other terms of the differential equation. Thus such useful theorems as the
orthogonality and completeness of eigenfunctions, the number and spacing of their roots, the existence of eigenvalues and
their asymptotic estimates, cannot be taken for granted. A second aim for the present paper is to use the exact solution of the
acoustic wave equation in a shear flow with a parabolic velocity profile to investigate the general properties of sound in shear
flows, leading to some: (i) counter-proofs, e.g. there can be no single set of eigenvalues and eigenfunctions in across a critical
level; (ii) conjectures, e.g. critical levels separate regions of the flow with independent sets of eigenvalues and eigenfunctions.

Thus the present paper pursues (Section 1) two interwoven lines of research: (i) to obtain the exact solution of the acoustic
wave equation in a parabolic shear flow, representing sound propagation in a duct with boundary layer over rigid or
impedance walls (Section 2); (ii) to use these solutions to investigate general properties, like the occurrence of critical levels,
and its implications, e.g. concerning the eigenvalues and eigenfunctions for the sound field (Section 3). The consideration of
the critical levels of sound in a parabolic shear flow, leads (Section 3) to four cases: (I) the simplest case I is a critical level on
the axis of the duct (Section 4), for which the whole flow region is covered by convergent power series of even and odd
eigenfunctions, whose linear combination specifies the general wave field; (II) for sound propagation upstream, i.e. opposite
to the mean flow, the critical levels lie outside the duct, and power series solutions around the axis still cover the whole flow
region, although (Section 5) the differential equation to be solved is less simple, viz. of the extended [114,115]
hypergeometric [116–118] type; (III) in the case III of downstream propagation such that the Doppler shifted frequency
does not vanish in the flow region, there are critical levels at imaginary distance, which limit the radius of convergence of one
pair of solutions of the wave equation, so that (Section 6) matching to another pair of solutions is needed; (IV) the final case IV,
in which the Doppler shifted frequency vanishes in the flow region, involves two critical levels at which the sound field
may have logarithmic singularities (Appendix A) and needs the matching of three pairs of solutions of the wave equation
(Section 7), valid in three regions, each overlapping the next. It is possible to prove that, in the cases where one (Section 8) or
two (Appendix B) critical levels occur, there is no single set of eigenvalues and eigenfunctions valid in the whole flow region.
This leads to the following conjecture: the critical levels of sound in a shear flow separate regions with distinct sets of
eigenvalues and eigenfunctions (Figs. 24 and 25). This corresponds to Klein’s theorem [113], although the acoustic wave
equation in a unidirectional shear flow (Fig. 1), put in self-adjoint form (Section 8), does not satisfy the conditions of Sturm–
Liouville theory because the wavenumber appears not only in the ‘eigenvalue’ but also elsewhere. The plots of eigenfunctions
in various cases (Figs. 4–15), show that they do not have the number of modes predicted by Sturmian theory for the
corresponding eigenvalues (Figs. 2 and 3).
Fig. 1. Sound wave of frequency o, and longitudinal wavenumber k, corresponding to horizontal wavevector parallel k40 or anti-parallel ko0, to a

parabolic shear flow, with velocity U0 on the axis, and zero at the walls y¼ 7L. The problem is to determine the eigenvalues kn, and the corresponding

eigenfunctions, for the even En(y) and odd Fn(y) modes of the acoustic pressure P(y).
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2. Acoustic wave equation and boundary conditions in a duct with a shear flow

The linearized, two-dimensional momentum (1) and continuity (2) equations read as

du

dt
þUuvþ

1

r0

qp

qx
¼ 0, (1a)

dv

dt
þ

1

r0

qp

qy
¼ 0, (1b)

1

c2

dp

dt
þr0

qu

qx
þ

qv

qy

� �
¼ 0, (2)
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Fig. 2. First K1 and second K2 eigenvalue, as a function of dimensionless frequencyO, for even mode E1,2, in the case I of horizontal wavevector parallel to the

mean flow velocity with critical level on the duct axis.
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Fig. 3. As Fig. 2, for the odd mode F1,2.
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where u, v are, respectively, x-, y-components of the acoustic velocity perturbation, p is the acoustic pressure perturbation,r0,
p0 the background mass density, pressure and adiabatic sound speed equation (3a)

c2 ¼
qp0

qr0

� �
, (3a)

d

dt
�

q
qt
þUðyÞ

q
qx

, (3b)

and the material derivative equation (3b) corresponds to a background unidirectional shear flow U¼UðyÞex. A steady
unidirectional shear mean flow leads to a constant pressure in the momentum equations (1a) and (1b), and satisfies the
adiabatic continuity equation (2). The latter assumes isentropic conditions, so that the mass densityrðyÞ and sound speed c(y)
must be constant along streamlines (i.e. independent of x) but can vary transversely (i.e. be arbitrary functions of y consistent
with the equation of state). In the case of an homentropic steady unidirectional shear flow the entropy is constant as well as
the pressure, and thus the mass density and sound speed are also constant. Since an unidirectional shear flow leads to zero
divergence for the velocity, there is no dilatation, and the preceding remarks hold irrespective of the Mach number. In the
sequel is considered the acoustics of a steady homentropic unidirectional shear flow with unrestricted Mach number, for
which elimination between Eqs. (1a), (1b) and (2) leads to [78] the following wave equation for the pressure:

1

c2

d2

dt2
�r

2

( )
dp

dt

� �
þ2Uu

q2p

qxqy
¼ 0; (4)

in the absence of shear flow Uu� dU=dy¼ 0, it would reduce to the convected wave equation, in curly brackets.
Since the background flow is steady, and uniform in the x-direction, it is convenient to use a Fourier decomposition in

time t, and also in the longitudinal coordinate x along the walls

p,vðx,y,tÞ ¼

ZZ þ1
�1

P,Vðk,o; yÞeiðkx�otÞ dk do, (5)

where P, V are, respectively, the acoustic pressure and normal velocity spectra, for a wave of frequency o and longitudinal
wavenumber k, at distance y from the axis. Substituting Eq. (5) in Eq. (4) leads to

ðo�kUÞP00 þ2kUuPuþðo�kUÞ
ðo�kUÞ2

c2
�k2

" #
P¼ 0, (6)

where prime denotes derivative with regard to y, viz. Pu� dP=dy. The acoustic wave equation (6) can be written in the form

o�P00�2ou�puþo�
o2
�

c2
�k2

� �
P¼ 0, (7)

where o� denotes (Eq. (8a)) the Doppler shifted frequency:

o�ðyÞ ¼o�kUðyÞ, (8a)

o�ðycÞ ¼ 0, (8b)

emphasizing that where the latter vanishes (Eq. (8b)), there is a critical level y¼ yc , which is a singularity of the wave
equation.

To derive boundary conditions, Eqs. (5) are used in the y-component (Eq. (1b)) of the momentum equation

dP

dy
¼ ir½o�kUðyÞ�V ¼ iro�V : (9)

An impedance condition is used to relate the acoustic pressure P and velocity V at the walls:

Pð7L; k,oÞ ¼ 7Z7 ðoÞ Vð7L,k,oÞ, (10)

where the impedance may be different Z7 at the two walls y¼ 7L, and may depend on frequency o and longitudinal
wavenumber k. Thus the impedance boundary conditions reads

½7Z7 Pu�iroP�y ¼ 7 L ¼ 0: (11)

In the case of elastic, i.e. compliant but non-absorbing wall, the impedance is imaginary

Z7 ¼ ijZ7 j : ½7 jZ7 jPu�roP�y ¼ 7 L ¼ 0, (12)

and the boundary condition equation (12) has real coefficients. A rigid wall corresponds to an infinite impedance

jZ7 j ¼1 : Puð7L; k,oÞ ¼ 0, (13)

and thus to zero normal gradient of the acoustic pressure at the wall.
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3. Existence of critical level for parabolic shear flow

The boundary condition equations (9)–(13) are of Sturm–Liouville type

a7 Pð7L; k,oÞþb7 Puð7L; k,oÞ ¼ 0, (14)

where a7 and b7 are constants; also as will be inferred in Section 8, the wave equation (7), when multiplied by o�3
�

o�2
� P00�2ou�o�3

� Puþ
1

c2
�

k

o�

� �2
" #

P¼ 0 (15)

takes the self-adjoint form

d

dy
GðyÞ

dP

dy

� �
�½JðyÞ�lHðyÞ�P¼ 0, (16)

where

GðyÞ ¼ ½o�ðyÞ��2 ¼HðyÞ, (17a)

�JðyÞ ¼ c�2, (17b)

�l� k2: (17c)

If critical levels are excluded o�ðyÞ40 then GðyÞ40 which is one condition of validity of Sturm’s oscillation theorem
[113]: for each positive integer, there is only one solution Pn(y) of Eqs. (16) and (14) with n zeros in �LryrL and this
eigenfunction corresponds to the eigenvalue ln. In the presence of a critical level o�ðycÞ, the function (17a) is singular at
y¼ 7yc , but it is continuous and positive in sub-intervals (y1, y2) and (y3, y4) with L4y14y24yc 4y34y440, and this
meets one of the conditions of validity of the Klein oscillation theorem [113], where l is replaced by lþmy: for each pair of
positive integers n, m, there is one pair of eigenfunctions, Pn with n zeros in (y1, y2) and Qm with m zeros in (y3, y4),
corresponding to unique eigenvalues, respectively, ln, mm. The eigenvalue would be l¼�k2 in Eq. (17c), and the oscillation
theorems require [113] that the functions in Eqs. (17a) and (17b) and coefficients equation (14) do not depend on l; this is
false here, since G, H in Eq. (17a) depend on k¼

ffiffiffiffiffiffiffi
�l
p

through the Doppler shifted frequency equation (8a). Thus the classical
oscillation theorems of Sturm and Klein fail to apply to the present problem, and do not prove that eigenvalues and
eigenfunctions exist in the present case; similarly, theorems on orthogonality and completeness of eigenfunctions may fail.

As a method to seek to determine eigenvalues and eigenfunctions, if they exist, the acoustic pressure is represented as a
linear combination:

Pðy; k,oÞ ¼ C1ðk,oÞEðy; k,oÞþC2ðk,oÞFðy; k,oÞ, (18)

of even E and odd F functions:

EðyÞ ¼ Eð�yÞ, (19a)

FðyÞ ¼ �Fð�yÞ; (19b)

symmetric boundary conditions are assumed. In the case of rigid walls, the boundary condition at y¼ L is

0¼ PuðLÞ ¼ C1EuðLÞþC2FuðLÞ, (20a)

and at y¼�L is

0¼ Puð�LÞ ¼ �C1EuðLÞþC2FuðLÞ, (20b)

where the fact that E, Fu are even and F, Eu are odd has been used. In order that the solutions be non-trivial

fC1,C2gaf0,0g : EuðLÞFuðLÞ ¼ 0: (21)

On the other hand, since E, F are linearly independent solutions of a linear second-order differential equation, their Wronskian
is non-zero

0a
EðyÞ FðyÞ

EuðyÞ FuðyÞ

" #
¼ EðLÞ FuðLÞ�FðLÞ EuðLÞ: (22)

Thus EuðLÞ ¼ 0¼ FuðLÞ cannot vanish at the same time, i.e.: (i) either EuðLÞ ¼ 0aFuðLÞ, and then C2 ¼ 0 by Eqs. (20a) and (20b) and
the solution Eq. (18) is P¼ C1EðyÞ even; (ii) or FuðLÞ ¼ 0 and the solution is odd. Thus solutions can be sought which are either
even or odd, and they can be used to find eigenvalues and eigenfunctions.

Consider next a parabolic shear flow, with velocity U0 ¼Uð0Þ on the axis of the duct, and zero at the walls Uð7LÞ ¼ 0:

UðyÞ ¼U0 1�
y2

L2

� �
, (23a)
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UuðyÞ ¼�2U0
y

L2
� qðyÞ, (23b)

for which the vorticity increases linearly (in modulus) from zero on axis to 72U0=L at the walls. The Doppler shifted
frequency equations (8a) and (23a)

o�ðyÞ ¼o�U0kþU0k
y2

L2
, (24)

vanish (8b) at the critical level(s)

yc ¼ 7L
ffiffiffiffiffiffiffiffiffiffiffi
1�L
p

, (25a)

L�
o

kU0
, (25b)

showing there are four cases: (i) for horizontal wavevector anti-parallel to the mean flow velocity ko0 with o¼ kU0, the
Doppler shifted frequency equation (24) is positive o�40 in the flow region L4 jyj40, except on axis o�ð0Þ ¼ 0 where it
vanishes, and a single critical level yc occurs; (ii) for horizontal wavevector anti-parallel to the mean flow velocity ko0, since
Lo0 the Doppler shifted frequency is positive in whole flow region o�ðyÞZo40 and there are two critical levels at
yc ¼ 7L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjLj

p
outside the duct; (iii) for horizontal wavevector parallel to the mean flow velocity k40 and Doppler shifted

frequency positive on the axis o4kU0, and hence everywhere o�ðyÞZo�kU0 since L41 and the critical levels lie at
‘imaginary distance’ yc ¼ 7 i

ffiffiffiffiffiffiffiffiffiffiffi
L�1
p

; (iv) for horizontal wavevector parallel to the mean flow velocity k40 and negative
Doppler shifted frequency on the axis of the duct o�ð0Þ ¼o�kU0o0 since it is positive (and equal to the wave frequency) at
the wallo�ð7LÞ ¼o40, it vanishes at two points in the duct forLo1, which are the critical levels (25a). Each of four cases in
addressed next in turn.

4. Case I: coincidence of singularities or critical levels on the axis of the duct

Substituting the parabolic velocity profile equation (23a) in the acoustic wave equation (6), or the Doppler shifted
frequency equation (24) in the alternate form Eq. (7) of the wave equation, leads to a second-order linear differential
equation, specifying the dependence of the acoustic pressure on distance from the axis:

½L2ðL�1Þþy2�P00�4yPuþ L�1þ
y2

L2

� �
K2 L�1þ

y2

L2

� �2

M2�1

( )
P¼ 0; (26)

it involves three dimensionless parameters, namely the wavenumber equation (27a), Mach number equation (27b):

K � kL, (27a)

M¼U0=c, (27b)

and either Eq. (25b) or the dimensionless frequency:

O�
oL

c
¼LKM: (27c)

The dimensionless frequency O and wavenumber K can be given other interpretations. For the dimensionless frequency:

O�
oL

c
¼

2pL

tc
¼

2pL

l
, (28a)

where t¼ 2p=o is the wave period, and l¼ tc the wavelength; thusO is a measure of the ratio of the half-width of the duct L

to wavelength l. Using

k¼
o
c

cosy, (28b)

for the horizontal wavenumber, where y would be the angle of the wavevector with the axis, if the medium were at rest, it
follows that the dimensionless wavenumber is given by

K ¼ kL¼
oL

c
cosy¼Ocosy; (28c)

thus it specifies the angle of the direction of propagation with the mean flow. The parameter equation (27c)

L¼
O

KM
¼

1

Mcosy
(28d)

shows that one or two critical level(s) occur in the duct LZ1 iff the Doppler factor 1�Mcosyr0 is non-positive.
Eq. (26) is simplest in the case L¼ 1 of critical level on the axis of the duct:

y2P00�4yPuþk2y2 M2y4

L4
�1

� �
P¼ 0; (29)
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in this case there are only two independent parameters, e.g. K (Eq. (27a)) and O (Eq. (28a)), and then M¼O=K by Eq. (27c).
Performing the change of independent variable:

z¼ k2y2, (30a)

Pðy; k,oÞ ¼FðzÞ (30b)

reduces the order of the coefficients from six in the differential equation (29) to two in

zF00�
3

2
Fuþ

1

4

O2

K6
z2�1

 !
F¼ 0, (31)

where prime denotes derivative with regard to z. The point z¼ 0 is a regular singularity of the differential equation (31), and
thus a solution exists in the form of a Frobenius–Fuchs series:

FðzÞ ¼ zs
X1
n ¼ 0

anðsÞzn, (32)

with index s and coefficients an to be determined. The only other singularity of the differential equation (31) in the point at
infinity z¼1which is an irregular singularity; hence the solution FðzÞ has an essential singularity as z-1. This solution is
not needed, since the radius of convergence of the series equation (32) is infinite, and therefore it covers the whole flow
region. Substituting Eq. (32) into the differential equation (31), and equating to zero the coefficients of powers of z, follows the
recurrence formula for the coefficients

4ðnþsÞðnþs�5=2Þan ¼ an�1�ðO=K3Þ
2an�3; (33)

the coefficients an with n¼�1,�2, . . . negative integer are zero, because they are not present in Eq. (32). Setting n¼ 0 in
Eq. (33) yields the indicial equation:

sðs�5=2Þa0 ¼ 0: (34)

Now, if a0 ¼ 0 then an ¼ 0 by Eq. (33) for all n¼ 1,2, . . . , leading by Eq. (31) to a trivial solutionF¼ 0. Thus one must set a0a0;
then the indicial equation (34) has roots s¼ 0,5=2. The root s¼ 0 corresponds an even solution:

Eðy; k,oÞ ¼F0ðzÞ ¼
X1
n ¼ 0

anð0Þ ðkyÞ2n, (35a)

and s¼ 5=2 to an odd solution:

Fðy; k,oÞ ¼F5=2ðzÞ ¼
X1
n ¼ 0

anð5=2Þ ðkyÞ2nþ5; (35b)

the two solutions are linearly independent, and the general integral equation (18) is a linear combination, with arbitrary
constants of integration C1, C2. The first coefficient a0ðsÞ in Eqs. (35) can be incorporated in C1, C2, i.e. one can set
a0ð0Þ ¼ 1¼ a0ð5=2Þ, respectively, in Eqs. (35a) and (35b).

The even E and odd F solutions are plotted separately. The eigenvalues are the roots Kn of Eq. (13), viz. the eigenvalues of
even equation (35a) and odd equation (35b) modes are given by the roots of, respectively,

0¼ LEuð7LÞ ¼
X1
n ¼ 0

2nanð0ÞðKÞ
2n, (36a)

0¼ LFuð7LÞ ¼
X1
n ¼ 0

ð2nþ5Þanð5=2ÞðKÞ2nþ5; (36b)

substituting the eigenvalues Kn in Eqs. (35a) and (35b), specifies the eigenfunctions En, Fn(y). Note that each eigenvalue
Kn ¼ knL in Eq. (27a) is a function of one free parameter, e.g. the dimensionless frequencyO in Eq. (28a); sinceL¼ 1, the Mach
number is determined from the preceding. Real eigenvalues are considered for propagating waves and rigid walls (complex
eigenvalues appear for impedance walls in Section 9). The first five eigenvalues K1–K5, of the even solution E, are given in
Table 1 for several values of the dimensionless frequencyO. Fig. 2 shows that the first two eigenvalues are close forOZ2, but
the second eigenvalue K2 increases rapidly for Oo1:5, whereas the first eigenvalue continues to decrease for Oo1:5; the
next three eigenvalues K3, K4, and K5 for the even eigenfunction follow a similar trend to K2, increasing asOdecreases. The first
K1, second K2, and third K3 eigenvalues for the odd solution F are given in Table 2, for several dimensionless frequencies; Fig. 3
shows that again the eigenvalues are closer for larger dimensionless frequency, and K3 increases faster than K1 as O reduces.
The eigenfunctions of the even solution E are plotted, in Fig. 4 the eigenfunction E1 corresponding to the first eigenvalue K1,
and in Fig. 5 the eigenfunction E2 corresponding to the second eigenvalue K2; for the odd mode, the eigenfunction F1

corresponding to the first eigenvalue K1 is plotted in Fig. 6, and the eigenfunction F2 corresponding to the second eigenvalue
K2 is plotted in Fig. 7. All the eigenfunctions are plotted in Figs. 4–7 as a function of the dimensionless distance Y � y=L, defined
as the distance from the axis y divided by the half-width of duct L. It is clear that for high-frequencies O2

b1 or (Eqs. (27c),



Table 1
First five eigenvalues K1ðOÞ2K5ðOÞ, as a function of dimensionless frequency O¼oL=c, for even mode E (y) in the case I of horizontal wavevector parallel to

the mean flow velocity with critical level on duct axis L¼ 1.

O K1 K2 K3 K4 K5

0.25 1.282283 – – – –

0.3 1.315564 – – – –

0.4 1.393492 – – – –

0.5 1.482212 – – – –

0.6 1.577448 – – – –

0.7 1.676097 – – – –

0.75 1.726019 – – – –

0.8 1.776080 – – – –

1.0 1.975371 – – – –

1.15 2.122194 32.173047 – – –

1.25 2.218604 17.232133 – – –

1.4 2.361482 10.230828 – – –

1.5 2.456172 8.1437346 31.15257 – –

1.75 2.696838 5.5368196 18.97793 33.44000 –

2.0 2.973492 4.2418849 13.61542 23.75999 34.05562

2.1 3.134116 3.8302910 12.24353 21.28399 30.47445

2.2 – – 11.13084 19.27647 27.57048

2.3 – – 10.21116 17.61812 25.17130

2.4 – – 9.438748 16.22650 23.15777

2.5 – – 8.781027 15.04292 21.44511

3.0 – – 6.556554 11.06610 15.69079

4.0 – – 2.025681 7.334041 10.30830

Table 2
As Table 1, but concerning the first K1ðOÞ, second K2ðOÞ, and third K3ðOÞ eigenvalues, for the odd mode FðyÞ.

O K1 K2 K2

1.2 22.48272 – –

1.25 17.23213 – –

1.3 13.98583 – –

1.4 10.23083 – –

1.5 8.143831 31.15257 –

1.75 5.542838 18.97793 33.44000

2.0 4.297875 13.61542 23.75999

3.0 2.399447 6.561798 11.06614

4.0 1.708063 4.444399 7.338548

5.0 1.335727 3.400145 5.549440

8.0 0.815271 2.028624 3.266707

16.0 0.403147 0.992651 1.587943
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Fig. 4. Even eigenfunctions E1, corresponding to first eigenvalue, plotted versus dimensionless distance from the axis Y ¼ y=L, for case I horizontal

wavevector parallel to the mean flow velocity with critical level on the duct axis.
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(28a)) smaller wavelength compared with the width of the duct, the acoustic pressure is higher near the wall; this
corresponds to the known result in ray theory, that sound is refracted away from regions of high velocity. For propagation
downstream, the group velocity c + U(y) is higher near the axis, and sound waves are refracted towards the wall [78]. At
frequenciesO� 1 for which ray theory no longer holds, this need not be true, and cases of acoustic pressure smaller at the wall
than on the axis of the duct occur in Figs. 4 and 7, i.e. both for even and some odd modes. In order to explain this, note that for
even modes, the acoustic pressure Euð0Þ ¼ 0 has an extremum at the centre of the duct; from Eq. (31) it follows that the sign of
the second derivative E00 is determined by the factor in curved brackets. For high-frequencies this factor is positive, i.e. E0040,
so the acoustic pressure is minimum at the centre of the duct, and increases towards the walls; for low-frequencies E00o0 the
acoustic pressure is maximum at the centre of the duct and decreases towards the walls, as seen in Fig. 4. Concerning the odd
modes, the centre of the duct is an inflexion point Fð0Þ ¼ 0¼ F 00, and from Eq. (31) it follows that the slope is also zero there
Fu¼ 0; for small y the slope Fu has the sign opposite to the factor in curved brackets, i.e. is positive and smaller for higher
frequencies; thus higher frequencies correspond to smaller changes of acoustic pressure, as seen in Figs. 6 and 7.

5. Case II: critical levels outside the duct

In the general case La1, the wave equation (26) does not simplify to Eq. (29), and thus, instead of Eqs. (30a) and (30b) the
following change of variable is performed:

z¼
y2

L2ð1�LÞ
, (37a)

Pðy; k,oÞ ¼CðzÞ (37b)

leading to a second-order linear differential equation whose coefficients are polynomials of degree up to three (instead of six):

ð1�zÞzC00 þ
1

2
þ

3z
2

� �
Cuþð1�zÞa½ð1�zÞ2b�1�C¼ 0; (38)

the independent dimensionless parameters are still the wavenumber equation (27a), Mach number equation (27b) and
frequency equation (28a) or (25b), but they appear in Eq. (38) only in two combinations:

a� K2ð1�LÞ
4

¼
KðK�O=MÞ

4
, (39a)

b� ð1�LÞ2M2 ¼
O
K
�M

� �2

: (39b)

The change of variable in Eq. (37a) is such that the critical level(s) are by Eq. (25a) at the point unity equation (40a):

zð7ycÞ ¼ 1 (40a)

zð7LÞ ¼
1

1�L
, (40b)

and the position of the walls equation (40b) depends on L¼o=kU0 ¼ u=U0, which is the ratio of the phase speed of sound
u¼o=k to the peak flow velocity U0 (another interpretation is given by Eq. (28d). The wave equation (38) has regular
singularities on the axis of the duct z¼ 0, and at the critical level(s) z¼ 1, and an irregular singularity at infinity z¼1; it is of
the extended of Gaussian hypergeometric type:

ð1�zÞzC00 þfg�ðaþbþ1ÞzgCu� abþ
Xs

m ¼ 1

Amz
m

 !
C¼ 0, (41)

where (i) for the Gaussian hypergeometric type s¼ 0, the point at infinity is a regular singularity; (ii) in the case of sound in an
exponential shear flow [89] s¼ 2, the point at infinity z¼1 is an irregular singularity of degree two, and the solution has an
essential singularity, which can be specified by normal integrals [116,117]; (iii) in the present case, of sound in a parabolic
shear flow equation (38), the point at infinity is an irregular singularity of third degree s¼ 3 and the same procedure shows
that method of normal integrals generally fails and a Laurent series solution is needed (Appendix A).

In the case II of horizontal wavevector anti-parallel to the mean flow velocity Ko0 since Lo0, and the critical levels
zðycÞ ¼ 14zð7LÞ ¼ 1=ð1�LÞ lie outside the duct, implying that the Frobenius–Fuchs expansion around the axis of the duct
z¼ 0, which is valid for jzjo1, covers the whose flow region jzjrzð7LÞo1. The details are similar to case I in Section 4, i.e.
the substitution:

CsðzÞ ¼ zs
X1
n ¼ 0

bnðsÞ zn, (42)

in Eq. (38) leads to the recurrence formula for the coefficients:

ðnþsÞðnþs�1=2Þbn ¼ ½ðnþs�1Þðnþs�7=2Þþaðb�1Þ�bn�1�að1�3bÞbn�2�3abbn�3þabbn�4, (43)
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and for n¼ 0, the indicial equation:

sðs�1=2Þb0 ¼ 0: (44)

The root s¼ 0 corresponds to an even, and s¼ 1=2 to an odd, solution:

EðyÞ ¼C0ðzÞ ¼
X1
n ¼ 0

bnð0Þð1�LÞ�n y

L

� �2n

, (45a)

FðyÞ ¼C1=2ðzÞ ¼
X1
n ¼ 0

bnð1=2Þð1�LÞ�n�1=2 y

L

� �2nþ1

: (45b)

The eigenvalues for the even equation (45a) and odd equation (45b) solutions are given, respectively, by the roots Kn of

0¼ LEuð7LÞ ¼
X1
n ¼ 0

bnð0Þð1�LÞ�n2n, (46a)

0¼ LFuð7LÞ ¼
X1
n ¼ 0

bnð1=2Þð1�LÞ�n�1=2
ð2nþ1Þ; (46b)

substituting K by Kn in Eqs. (45a) and (45b) leads to the eigenfunctions for the even En and odd Fn modes. These solutions cover
the whole flow region, because for kUðyÞo0, the Doppler shifted frequency equation (8a) is greater than wave frequency
o�ðyÞ4o and thus it cannot vanish in the flow region, i.e. there are no critical levels inside the duct; the critical levels z¼ 1 or
Eq. (25a) at yc ¼ 7L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þjLj

p
outside the duct, correspond to a velocity profile Eq. (23a) extended into a region jyj4L of ‘back

flow’ UðyÞo0 so that then the horizontal wavevector is parallel to the mean flow velocity, and the Doppler shifted frequency
vanishes, although this occurs outside the region of interest.

The eigenvalues Kn depend on the remaining two free parameters, e.g. the dimensionless frequency equation (28a) and the
Mach number equation (27a). The first eigenvalue K1 of the even mode E1 is given in Tables 3 and 4, for several values of the
dimensionless frequency and, respectively, subsonic and supersonic Mach numbers; in the present case II, of propagation
upstream, the group velocity c�U(y) is smaller near the axis, and ray theory predicts that at high-frequencies O2

b1, the
sound is refracted away from the region of high group velocity, near the walls; at low frequencies, the acoustic pressure is
higher near the walls, as had been found in the preceding case (Section 4). Figs. 8 and 9 show plots of the first even
eigenfunction E1 for several values, respectively, of the subsonic Mach number and dimensionless frequency. It is clear from
Fig. 9 that for the even mode and case II, the acoustic pressure is lower at the walls than at the centre of the duct, with this
effect being more pronounced at higher frequencies; Fig. 8 shows that an increase in the Mach number of the background
flow, which causes a larger variation of group velocity c (1�M) across the duct, has a similar effect to an increase in frequency,
Table 3
First eigenvalue K1ðO,MÞ, as a function of Mach number M and dimensionless frequency O for the even mode E1(y) in case II of horizontal wavevector anti-

parallel to the mean flow velocity with no critical levels in the flow.

O M¼ 0:1 M¼ 0:3 M¼ 0:5 M¼ 0:7 M¼ 0:8

0.1 �0.10698 �0.12302 �0.14209 �0.16441 �0.17681

0.5 �0.53495 �0.61558 �0.71292 �0.83129 �0.90081

0.6 �0.64196 �0.73895 �0.85688 �1.00292 �1.09116

0.8 �0.85600 �0.98615 �1.14727 �1.35673 �1.49393

1.0 �1.07009 �1.23410 �1.44195 �1.73084 �1.94488

2.0 �2.14156 �2.49209 �3.02853 �4.30951 �6.26723

4.0 �2.76462 �3.43260 �4.16657 �5.03731 �5.73790

8.0 �5.52611 �6.89825 �8.38210 – –

Table 4
As Table 3, for supersonic flow.

O M¼ 1:2 M¼ 1:8 M¼ 2:0 M¼ 2:5

0.1 �0.23441 �0.34360 �0.38742 �0.54049

0.5 �1.35184 �5.05152 �4.21520 �2.97937

0.6 – �4.90989 �4.08762 �2.84264

0.8 – �4.61348 �3.80806 �2.43460

1.0 – �4.28754 �3.46328 �1.61414

2.0 �8.83741 �1.00831 �0.87457 �0.66633

4.0 – �2.16786 �1.87798 �1.42847

8.0 �2.03341 �1.24264 �1.10568 �0.86980
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Fig. 8. First even eigenfunction E1, as a function of dimensionless distance from axis Y ¼ y=L, for fixed dimensionless frequencyO¼ 0:5, and several values of

Mach number M, for case II of horizontal wavevector anti-parallel to the mean flow velocity.
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Fig. 9. As Fig. 8, for fixed Mach number M ¼ 0:1, and several values of dimensionless frequency O.

Table 5
As Table 3, for the odd mode F1(y).

O M¼ 0:1 M¼ 0:3 M¼ 0:5 M¼ 0:7 M¼ 0:8

2.0 �1.38668 �1.71427 �2.07839 �2.50166 �2.76286

4.0 �3.89925 �4.42990 �5.25030 �7.36135 �2.24163

8.0 �2.15966 �3.96192 �6.27548 �8.52873 �9.66646
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i.e. a larger excess of acoustic pressure at the axis of the duct, when compared with the wall values, occurs for higher Mach
numbers. Concerning the odd mode, the first eigenvalue is indicated for several frequencies in Table 5 for subsonic and Table 6
for supersonic flows. For the first odd eigenfunction, the acoustic pressure at the wall increases with increasing subsonic
Mach number (Fig. 10) and decreasing frequency (Fig. 11), the effect being weaker than for the even mode. The first even and
odd eigenfunctions are plotted, respectively, in Figs. 12 and 13 for several dimensionless frequencies and one of the
supersonic Mach numbers in Tables 4 and 6. Fig. 12 shows a pressure oscillation of the first even mode between the duct axis
and the wall at lower frequencies; there is a monotonic decay towards the wall, as predicted by ray theory, only for the higher
dimensionless frequency. The pressure oscillations also appear for the first odd mode F1 in Fig. 13, more noticeably at higher
dimensionless frequencies; for small dimensionless frequency there is a monotonic pressure increase towards the wall, from
the zero at the duct axis.



Table 6
As Table 5, for supersonic flow.

O M¼ 1:2 M¼ 1:5 M¼ 1:8 M¼ 2:0

0.1 – �5.25382 �3.65934 �3.08515

0.3 – �4.86016 �3.37211 �2.81835

0.5 �9.34363 �4.45312 �3.04091 �2.46752

0.6 �8.86316 �4.24007 �2.83755 �2.17589

0.8 �7.90844 �3.77293 �0.64931 �0.53688

1.0 �6.95966 �0.54519 �0.41466 �0.36166

2.0 – �7.19973 �4.54283 �2.84041

4.0 �0.97970 �0.74138 �0.60160 �0.53559

8.0 �5.27047 �3.53456 �2.76263 �2.42704
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Fig. 10. As Fig. 8, for first odd eigenfunction F1.
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Fig. 11. As Fig. 9, for the first odd eigenfunction F1.
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6. Case III: imaginary critical levels and matching of solutions

In the case of horizontal wavevector anti-parallel to the mean flow velocity there is never a critical level in the flow region,
i.e. they lie outside the walls, and do not limit the convergence of the solution about the axis of the duct, in the region of
interest, namely, the duct. In the case of horizontal wavevector parallel to the flow velocity k40, there is no critical level if the
Doppler shifted frequency is positive throughout the flow region L41 in Eq. (25b), i.e. the critical level equation (25a) lies at
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Fig. 12. First even eigenfunction E1, as a function of dimensionless distance from axis Y ¼ y=L, for fixed Mach number M¼ 1:8, and several values of

dimensionless frequency, for case II of horizontal wavevector anti-parallel to the mean flow velocity.
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Fig. 13. First even eigenfunction F1, as a function of dimensionless distance from axis Y ¼ y=L, for fixed Mach number M¼ 1:8, and several values of

dimensionless frequency, for case II of horizontal wavevector anti-parallel to the mean flow velocity.
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imaginary ‘distance’ equation (47a):

yc ¼7 iL
ffiffiffiffiffiffiffiffiffiffiffi
L�1
p

, (47a)

0r jycj ¼ L
ffiffiffiffiffiffiffiffiffiffiffi
L�1
p

, (47b)

although then the solution equations (45a), (45b) and (43) are limited in their radius of convergence (47b) by this location. If
LZ2, i.e. oZ2kU0 and jycjZL, the solution equations (45a) and (45b) cover the whole flow region; if 1rLo2 they cover
only a part of the flow region equation (47b) near the axis of the duct, and they must be matched to another pair of solutions,
covering a region near the wall, overlapping with Eq. (47b), i.e. valid for y1r jyjrL, with y1o jycj. The solution about the
irregular singularity at infinity y¼ 71, z¼1, is complicated since it has an essential singularity of non-normal type
(Appendix A), and besides holds only for jyj4 jycj i.e. it does not overlap with Eq. (47b), except possibly at jyj ¼ jycj if the
equality sign holds in both cases. It is more practical to seek a pair of solutions around a regular point y0, since the yc is on the
imaginary axis, it is farther from real y0 than the origin, which is the other singularity at finite distance. Thus choosing:

y0 ¼
Lffiffiffi
2
p , (48a)

z0 ¼
1

2ð1�LÞ
o0, (48b)
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the solution about the regular point y¼ y0 has radius of convergence y0 ¼ L=
ffiffiffi
2
p

and thus applies over a region
0oyo2y0 ¼ L

ffiffiffi
2
p

which includes the wall. This suggests the introduction of the new variable equation (49a):

Z¼ z�z0, (49a)

jz�z0jo�z0,1�z0, (49b)

leading to a power series solutions converging for Eq. (49b). It can be confirmed that these conditions are met by Eq. (48b), viz:

1

1�L
o2z0, 2z0�1ozo0o�2z0, 1�2z0o

1

L�1
, (50)

because forL41, it follows from Eq. (37a), over the whole duct except the axis 0o jyjrL, that 04z41=ð1�LÞ, in agreement
with Eq. (50).

The change of variable:

Z¼ zþ
1

2ðL�1Þ
, (51a)

CðzÞ ¼Q ðZÞ, (51b)

transforms the wave equation (38) to

ð1�z0�ZÞðz0þZÞQ 00 þ
1þ3z0þ3Z

2

� �
Q uþfað1�z0�ZÞ½bð1�z0�ZÞ2�1�gQ ¼ 0: (52)

The power series solution is sought in the Frobenius–Fuchs form

QsðZÞ ¼ Zs
X1
n ¼ 0

dnðsÞZn, (53)

viz, although a MacLaurin series solution s¼ 0 exists, retaining the index sa0 facilitates calculating the coefficients; the
latter satisfy the recurrence relation:

ðnþsÞðnþs�1Þz0ð1�z0Þdnþðnþs�1Þ½ðnþs�2Þð1�2z0Þþð1þ3z0Þ=2�dn�1

¼ fðnþs�2Þðnþs�9=2Þþað1�z0Þ½1�bð1�z0Þ
2
�gdn�2

þa½1�3bð1�z0Þ
2
�dn�3þ3bað1�z0Þdn�4þbadn�5 (54)

for n¼ 0 the indicial equation is obtained

ðs�1Þsz0ð1�z0Þd0 ¼ 0, (55)

whose roots are s¼ 0,1. The higher root leads to the solution:

Q1ðZÞ ¼
X1
n ¼ 0

dnð1Þ
Y

L

� �2

�
1

2

" #
1

ð1�LÞ

( )
¼ TðyÞ, (56)

for which the recurrence formula equation (54) specifies all coefficients. Note that the solution equation (56) is even in y, and
the solution of Eq. (53) with s¼ 0 would also be even; thus the latter solution Q0ðZÞmust reduce to a constant multiple of
Q1ðZÞ, and this can be shown to be the case in the usual way [116], noting that the coefficient of d1 vanishes in Eq. (54) fors¼ 0,
n¼ 0 in Eq. (54), i.e. d2 cannot be determined from d0. The procedure is similar to that used in Appendix B, and as in that case
the second linearly independent solution S(y) has a logarithmic singularity logðz�z0Þ at z¼ z0 which introduces a phase term.
A similar situation will occur in the next section (Section 7), where the method to deal with such logarithmic singularities will
be presented in more detail.

Since the pairs of solutions E, F (Eqs. (45a) and (45b)) of Eq. (38) and T, S of Eq. (52) are valid over an overlapping region
jzjo1 and Eq. (50):

jzjominf1,1=ðL�1Þg, (57a)

jyjominfL,L
ffiffiffiffiffiffiffiffiffiffiffi
L�1
p

g, (57b)

they are related by a linear combination:

EðyÞ ¼ A11TðyÞþA12SðyÞ, (58a)

FðyÞ ¼ A21TðyÞþA22SðyÞ, (58b)

with constant coefficients A11, A12, A21, A22 which can be determined at any two points. The case III corresponds to horizontal
wavevector parallel to the mean flow velocity and critical layer at a distanceLZ2 such that the solution equations (45a) and
(45b) cover the whole flow region. The eigenvalues are determined by Eqs. (46a) and (46b) for LZ2 and by substitution of
Eqs. (58a) and (58b) in EðLÞ ¼ 0¼ FðLÞ for 1oLo2. The first eigenvalues in cases II–IV depend on Mach number equation
(27b) and dimensionless frequency equation (28a). The first eigenvalue K1 for the even mode E1(y) is given in Table 7 for fixed
frequency O and several Mach numbers M, and for the odd mode F1(y) in Table 8; it follows that the eigenvalue K1 of E1



Table 7
First eigenvalue K1ðO,MÞ, as a function of Mach number M¼U0=c on the axis of the duct and dimensionless frequency O, for the even mode E1(y), in the case

III of horizontal wavevector parallel to the mean flow velocity.

O M¼ 0:1 M¼ 0:3 M¼ 0:5 M¼ 0:7

0.1 0.09363 0.08257 0.07339 0.06576

0.5 0.46819 0.41293 0.36710 0.32894

0.6 0.56184 0.49555 0.44059 0.39480

0.8 0.74915 0.66088 0.58768 0.52666

1.0 0.93648 0.82633 0.73496 0.65876

2.0 1.87372 1.65655 1.47623 1.32494

4.0 2.22164 1.80727 1.49523 1.25902

8.0 4.45225 3.64261 3.03111 2.56477

Table 8
As Table 7, for the odd mode F1(y).

O M¼ 0:1 M¼ 0:3 M¼ 0:5 M ¼ 0:7 M¼ 0:8

2.0 1.10167 0.87143 0.69747 0.57006 0.51983

4.0 3.47624 3.11080 2.78589 2.49582 2.36326

8.0 1.07644 0.60617 0.40239 0.29732 0.26245
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Fig. 14. First even eigenfunction E1, as a function of dimensionless distance from axis Y ¼ y=L for fixed dimensionless frequency O, and several values of

Mach number M, for case III of horizontal wavevector parallel to the mean flow velocity without critical levels in the flow region.

L.M.B.C. Campos, J.M.G.S. Oliveira / Journal of Sound and Vibration 330 (2011) 1166–1195 1181
increases with increasing frequencyO, and decreasing Mach number M. The first eigenfunction of the even mode E1 is plotted
in Fig. 14 for fixed frequency and several Mach numbers, and vice versa in Fig. 15: in all cases the acoustic pressure increases
towards the wall, more so at higher Mach numbers and higher frequencies. The first eigenvalue for the odd and even modes is
indicated in Table 9 for one dimensionless frequency and several Mach numbers including supersonic cases. The first even
and odd eigenfunctions are plotted, respectively, in Figs. 16 and 17 for a high dimensionless frequencyO¼ 8:0 and eight Mach
numbers ranging from low sub-sonic to bissonic. The wave forms are oscillatory and not too sensitive to Mach number at this
high frequency well into the ray limit O2

b1.

7. Case IV: two critical levels in the flow region

The remaining case IV corresponds to the horizontal wavevector parallel to the mean flow velocity 0oLo1 when the
Doppler shifted frequency changes sign between the axis of the duct o�ð0Þ ¼o�kU0o0 and the walls o�ð7LÞ ¼o40, and
thus vanishes at two critical levels o�ðycÞ ¼ 0 in the stream equation (25a). The critical level can occur only for horizontal
wavevector parallel to the mean flow velocity, which reduces the Doppler the shifted frequency relative to the wave
frequency o�ð0Þoo and where the phase speed o=k¼UðycÞ equals the mean flow velocity. Since the two critical levels
y¼ 7yc in Eq. (26), coalesce to a single point unity zc ¼ 1 in terms of the variable in Eq. (37a), they can be placed at the origin,
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Table 9
First eigenvalue K1ðO,MÞ, as a function of Mach number M ¼U0=c on the axis of the duct for dimensionless frequencyO¼ 0:8, for the even E1(y) and odd F1(y)

modes, in the case III of horizontal wavevector parallel to the mean flow velocity.

M Even mode Odd mode

0.8 2.37337 0.262459

1.2 1.80349 0.177899

1.8 1.30133 0.119509

2.0 1.18758 0.107685
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Fig. 16. First even eigenfunction E1, as a function of dimensionless distance from axis Y ¼ y=L for fixed dimensionless frequencyO¼ 8:0, and several values of

Mach number M, for case III of horizontal wavevector parallel to the mean flow velocity without critical levels in the flow region.
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using the new variable

x� 1�z¼ 1�
y2

L2ð1�LÞ
, (59a)

CðzÞ ¼ RðxÞ, (59b)

which transforms the wave equation (38) to

ð1�xÞxR00 þð32x�2ÞRuþaxðx2b�1ÞR¼ 0: (60)
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Fig. 17. Same as previous figures, but for first odd eigenfunction F1.
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Since the critical level x¼ 0 is a regular singularity, there is a power series solution

RsðxÞ ¼ xs
X1
n ¼ 0

enðsÞ xn, (61)

which has unit radius of convergence jxjo1, because the nearest singularity is the axis of the duct z¼ 0, x¼ 1. Substitution of
Eq. (61) into Eq. (60) leads to the recurrence formula for the coefficients

ðnþsÞðnþs�3ÞenðsÞ ¼ ðnþs�1Þðnþs�7=2Þen�1ðsÞþaen�2ðsÞ�aben�4ðsÞ, (62)

and setting n¼ 0 specifies the indicial equation

sðs�3Þe0ðsÞ ¼ 0: (63)

The largest root s¼ 3 leads to a solution

R3ðxÞ ¼
X1
n ¼ 0

enð3Þ x
nþ3
¼
X1
n ¼ 0

enð3Þ 1�
y2

L2ð1�LÞ

	 
nþ3

�WðyÞ; (64)

the index s¼ 0 leads to a solution with a logarithmic singularity:

R0ðxÞ ¼ R3ðxÞlogxþ
X1
n ¼ 0

enð0Þx
nþ3, (65)

of which details are given in Appendix B.
The logarithmic singularity has a jump across critical level:

logx¼ logf1�ðy=ycÞ
2
g ¼

logj1�ðy=ycÞ
2
j if jyjoyc ,

logj1�ðy=ycÞ
2
j�ip if jyj4yc ,

(
(66)

where it is necessary to justify why the phase term is�ip and not þ ip. To do so the standard procedure is followed [119,96], of
giving the frequency a small positive imaginary part equation (67a):

o¼oþ ie, (67a)

e�iot ¼ e�ioteet , (67b)

causing a growth in time in Eq. (5), viz. Eq. (67b) for e40 as would be the case in the slow triggering of an instability. The
variable x (Eq. (59a)) becomes

x¼ 1�
y
L

� �2

1� o
kU0

¼ x�
ie

kU0�o
y

L

� �2

, (68a)

x � 1�
y
L

� �2

1� o
kU0

, (68b)

where x is calculated for o¼o, and there is, in addition, a small negative imaginary part. At the critical level x ¼ 0, and
x¼�ijxj, justifying the negative phase jump�ip in Eq. (66). The question arises of whether this logarithmic singularity causes
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the acoustic pressure P or velocity V to diverge at the critical level. The acoustic pressure equation (65) is given, to leading
order equation (64), near the critical level, by

Pðyc; k,oÞ ¼ lim
x-0

R0ðxÞ ¼ lim
x-0

x3logxþ f0ð0Þ ¼ f0ð0Þ, (69a)

and hence is finite; the transverse acoustic velocity V in Eq. (9), scales on the derivative of the acoustic pressure:

Puðyc; k,oÞ � lim
x-0

Ru0ðxÞ
dx
dy

� �
� lim

x-0
fx2logxþx2

þ f1ð0ÞþOðxÞg ¼ f1ð0Þ (69b)

is also finite at the critical level (actually zero, see Appendix B). The same applies to longitudinal acoustic velocity, as follows
from Eq. (1a). In conclusion, both the acoustic pressure and velocity are finite at the critical level, so the need for a nonlinear
theory is not obvious.

Bearing in mind Eqs. (66), the second solution equation (65) in the neighbourhood of the critical level takes the form

R1ðxÞ ¼ XðyÞ�ipWðyÞ, (70a)

XðyÞ ¼ logjy�ycjWðyÞþ
X1
n ¼ 0

fnð0Þ 1�
y

yc

� �2
" #n

, (70b)

where both W (Eq. (64)) and X (Eq. (70b)) are real functions. This pair of solutions is valid for Eq. (71a):

14 jxj ¼ 1�
y

yc

� �2


, (71a)

0o jyjoyc

ffiffiffi
2
p
¼ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�LÞ

p
� y�, (71b)

in a region excluding the origin, and extending to the wall if 2ð1�LÞZ1, i.e. forLr1=2. For 1=2oLo1, in order to cover the
region near the wall, it is necessary to match the solution equations (64) and (70a) to T (Eq. (56)), S viz:

TðyÞ ¼ B11WðyÞþB12fXðyÞ�ipWðyÞg, (72a)

SðyÞ ¼ B21WðyÞþB22fXðyÞ�ipWðyÞg, (72b)

where some of the constants B11, B12, B21, B22 must be complex, since W, X, T, S(y) are all real; one way of making sure that S(y)
is real is to take regular expansion point at the wall y0 ¼ L corresponding to z0 ¼ 1=ð1�LÞ42. In this case the solutions T, S(y)
are valid (49b) for Eq. (73a):

jz0�zjoz0,z0�1, (73a)

jyj4L
ffiffiffiffiffiffiffiffiffiffiffi
L�1
p

, (73b)

and z41 which implies Eq. (73b); the region equation (73b) overlaps with Eq. (71b) and extends to the wall. For all values of
L the solutions W, X can be matched to those valid around the axis of the duct:

EðyÞ ¼ C11WðyÞþC12XðyÞ, (74a)

FðyÞ ¼ C21WðyÞþC22XðyÞ, (74b)

where the constants C11,C12, C21, C22 are real, since all functions E, F, W, X(y) are real. Note that the relation equations (74a),
(74b), (72a) and (72b) are valid in disjoint regions, the former jyjo jycj including the axis of the duct y¼ 0, and the latter
jyj4 jycj including the walls of the duct jyj ¼ L.

8. Existence of single or multiple sets of eigenvalues and eigenfunctions

The relation (74a) and (74b) is valid only between the duct axis and the critical level; the right-hand side is valid across the
critical level, with W(y) unchanged Eq. (64) and X(y) replaced Eq. (66) by XðyÞ�ipWðyÞ in Eq. (70a). Since these solutions
extend up to the wall, in the case 0oLr1=2, the eigenvalues are determined by

0¼ C12XuðLÞþðC11�ipC12ÞW uðLÞ, (75a)

0¼ C21XuðLÞþðC11�ipC22ÞW uðLÞ, (75b)

where C11, C12, C21, C22 are real as in Eqs. (74a) and (74b); in the case of 1=2olo1 the solution equation (75a) is not valid at
the wall, but using Eqs. (72) which is valid, it is possible to arrive (Appendix B) at a formula similar to Eqs. (75). Since the
coefficients are real in Eqs. (75) there are four relations:

C11W uðLÞþC12XuðLÞ ¼ 0¼ C12W uðLÞ, (76a)

C21W uðLÞþC22XuðLÞ ¼ 0¼ C22W uðLÞ: (76b)
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If C12a0 or if C22a0, then it follows that W uðLÞ ¼ 0¼ XuðLÞ vanish simultaneously, which is impossible, since the Wronskian
would be zero, and W(y) and X(y) would not be independent solutions. Therefore one must set C12 ¼ 0¼ C22, in which case
Eqs. (74) the pair of solutions W, X(y) about the critical level must be constant multiples of the pair of solutions E, F(y) about
the axis:

EðyÞ ¼ C11WðyÞ, (77a)

FðyÞ ¼ C21WðyÞ; (77b)

these conditions were obtained for 0oLo1=2, and for 1=2oLo1 one would obtain (Appendix B) from Eqs. (72) similar
relations:

TðyÞ ¼ B11WðyÞ, (78a)

SðyÞ ¼ B21WðyÞ: (78b)

Since E is even in Eq. (77a) and F is odd in Eq. (77b), the two equations imply C11 ¼ 0¼ C21; similarly Eqs. (78), where T, S(y) are
not constant multiples, cannot be satisfied, except if B11 ¼ 0¼ B12. This shows that there is no single system of real
eigenvalues which is valid across the critical levels (in the study of stability of the parabolic shear flow the eigenvalues could
be complex, whereas for the acoustic propagation problem they are taken to be real).

In order to explain this, reconsider the wave equation for a general shear flow equation (6) and resume the comparison
with the classical self-adjoint operator equation (16). If the wave equation (6) = Eq. (7) is multiplied by a factor IðyÞ:

o�IP00�2ou�Ipuþ Io�
o2
�

c2
�k2

� �
P¼ 0, (79)

it coincides with the self-adjoint form equation (16)

l��k2 : GP00 þGuPuþðlH�JÞP¼ 0, (80)

if the following equalities are satisfied:

I¼
G

o�
¼�

Gu

2ou�

¼
H

o�
¼�

Jc2

o3
�

; (81)

thus G satisfies the differential equation (82a)

Gu

G
¼�

2ou�

o�
, (82a)

I¼
G

o�
¼o�3

� , (82b)

whose solution is Eq. (17a), and it follows that I is given by Eq. (82b). Using this value of I (Eq. (82b)), then Eq. (81) specifies H, J

in agreement with Eqs. (17b) and (17c), which is thus proven; also, substituting Eq. (82b) in Eq. (79) yields the self-adjoint
form equation (15) = Eq. (16), i.e.

d

dy

dP

dy

1

o�kUðyÞ

	 

þ

1

c2
�

k2

½o�kUðyÞ�2

� �
P¼ 0: (83)

In the case when there is no critical level o4kUðyÞ, the coefficients are continuous positive functions of y, as required in
Sturm’s theorem; however, the eigenvalue kn ¼

ffiffiffiffiffiffiffiffiffi
�ln

p
appears in several terms, which is not allowed for in Sturm’s theorem.

One can check, in particular cases, that this does invalidate the theorem. If the theorem were valid, then n-th eigenvalue
should correspond to an eigenfunction Pn with n zeros. The plots in Figs. 3–5 of two eigenfunctions for sound in a parabolic
shear flow, show at most one zero. Since the boundary condition equations (13) were of Sturm–Liouville type equation (14),
and the wave equation (6) in self-adjoint form equation (83) has continuous positive coefficients, the reason for the failure of
Sturm’s theorem can only be ascribed to the eigenvalues kn ¼

ffiffiffiffiffiffiffiffiffi
�ln

p
from ln ¼�k2

n in (80) appearing in several coefficients of
the wave equation.

The failure of Sturm’s theorem in the absence of critical levels, does not augur well for its generalization, allowing for the
presence of singularities, viz. Klein’s theorem [113]. Although the latter cannot be expected to hold, it might suggest some
qualitative features, which would extend to the present case. Klein’s oscillation theorem replaces l by lþmy which is not the
case in the present problem. It leads to the conclusion that, if the coefficients are positive and continuous in disjoint intervals
ða1,b1Þ, ða2,b2Þ, etc. with a1ob1oa2ob2, then there is a separate set of eigenvalues and eigenfunctions in each interval; in
between the intervals, e.g. for (b1, a2) nothing is assumed of the coefficients of the differential equation, e.g. they could be
discontinuous or have singularities. Although Klein’s theorem does not apply to the present problem, the conjecture can be
made that a singularity of the wave equation separates two intervals with distinct sets of eigenvalues and eigenfunctions; of
course this conjecture cannot be proved by reference to Klein’s theorem, whose conditions of validity are not satisfied by the
present problem, but evidence may be sought from other directions. It has been shown that there is a single set (Fig. 24) of
eigenvalues and eigenfunctions across the duct, in the cases II and III, when there is no critical level. In the case I, when there is
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a critical level at the axis of the duct, there is also a single set of eigenvalues; this apparent exception to our conjecture can be
discarded, by noting that this is a ‘degenerate’ critical level, without a logarithmic singularity, and across which all quantities
are continuous; it is this sense, an ‘apparent’ singularity, i.e. singularity of the differential equation in a particular form, which
is not a singularity of the solution [120]. By contrast, in case IV, there are two critical levels, with logarithmic singularities, and
phase jumps; these are not ‘apparent’ singularities, which can be made to disappear by a mere change of variable, like in the
well-known tidal equation of Laplace [91,121]. In the case IV it has been shown that there is no single set of eigenvalues and
eigenfunctions, which is consistent with our conjecture, but does not prove it. Our conjecture is that, in case IV of two critical
levels at y¼ 7yc , there are (Fig. 25), three sets of eigenfunctions and eigenvalues:
Interval
 Eigenvalues
 Eigenfunction
�Loy1 ryry2 o�jyc j
 kn
�
 Sn , Tn(y)
�jyc joy3 ryry4 o jyc j
 kn
0
 En , Fn(y)
jyc joy5 ryry6 o1
 kn
+
 Sn , Tn(y)
The conjecture must be least partly true, for distinct eigenvalues and eigenfunctions have already been obtained from the
solutions E, F(y) in Section 5 and the solutions in Section 6.

9. Impedance walls

When the duct walls are lined, the boundary condition is Eq. (11). In terms of the dimensionless frequency O (Eq. (27c))
and specific impedance Z defined as

Z ¼ Z=ðrcÞ, (84)

the boundary condition can be written as

PuðyÞ8
i

ZL
OPðyÞ

	 

y ¼ 7 L

¼ 0: (85)

Substituting Eq. (18) in Eq. (85) leads to the system of equations:

½C1EuðLÞþC2FuðLÞ��
iO
ZL
½C1EðLÞþC2FðLÞ� ¼ 0,

½�C1EuðLÞþC2FuðLÞ�þ
iO
ZL
½C1EðLÞ�C2FðLÞ� ¼ 0,

8>>><
>>>:

(86)

where the fact that E(y) and FuðyÞ are even and EuðyÞ and F(y) are odd was used. This system leads to

C2 FuðLÞ�
iO
ZL

FðLÞ

	 

¼ 0,

C1 EuðLÞ�
iO
ZL

EðLÞ

	 

¼ 0:

8>>><
>>>:

(87)

Since the constants C1 and C2 cannot vanish simultaneously, the boundary conditions are

EuðLÞ�
iO
ZL

EðLÞ ¼ 0, (88)

FuðLÞ�
iO
ZL

FðLÞ ¼ 0, (89)

for the even and odd functions, respectively. Note that Eqs. (88) and (89) cannot be verified simultaneously, otherwise the
Wronskian would vanish at y¼ L. Eqs. (88) and (89) specify the eigenfunctions for the wavenumber K, which can now be
complex, for the even or odd modes, respectively. Impedance boundary conditions are illustrated next for a specific
impedance Z ¼ 1þ i and for a dimensionless frequencyO¼ 2:0. The ‘first’ eigenvalues obtained for several Mach numbers are
presented in Table 10 for even functions E and in Table 11 for odd functions F. The complex values of the wavenumber imply
from Eq. (5) stable modes if ImðkÞ40 and unstable modes if ImðkÞo0. The complex eigenvalues imply that the eigenfunctions
are also complex. Figs. 18 and 19 show the modulus and phase of the even and odd eigenfunctions, respectively, for
wavevector parallel to the mean flow velocity for several Mach numbers. The modulus and phase of the even and odd
eigenfunctions, respectively, are plotted for wavevector anti-parallel to the mean flow velocity for several Mach numbers, for
subsonic flow in Figs. 20 and 21 and for supersonic flow in Figs. 22 and 23.

For subsonic mean flow and impedance walls the first eigenfunction increases in amplitude and phase towards the wall
(Fig. 18); the first odd eigenfunction (Fig. 19) also increases in amplitude towards the wall but decreases in phase. The
amplitude has a maximum at the wall for the odd eigenfunction (Fig. 19), that must vanish on the duct axis Fð0Þ ¼ 0 and has
zero slope at the wall FuðLÞ ¼ Fuð�LÞ ¼ 0, and hence is concave downwards; the amplitude of the even eigenfunction (Fig. 18)
has zero slope on axis and increases towards the wall, and hence is concave upwards. The subsonic mean flow is considered



Table 10
Eigenvalues KðO,MÞ, as a function of Mach number M¼U0=c on the axis of the duct for dimensionless frequency O¼ 2:0 and impedance walls with specific

impedance Z ¼ 1þ i, for the even E1(y) and odd F1(y) modes, in the case II of horizontal wavevector anti-parallel to the mean flow velocity. For comparison,

the first eigenvalues for rigid walls are also shown.

M Even modes E(y) Odd modes F(y)

Rigid walls Impedance walls Rigid walls Impedance walls

0.1 �2.14156 �2.36563� i0.45343 �1.38668 �2.32601� i0.60015

0.3 �2.49209 �2.70545� i0.50131 �1.71427 �2.68283� i0.71208

0.5 �3.02853 �3.17357� i0.45074 �2.07839 �3.05239� i0.81542

0.7 �4.30951 �4.34014� i0.14778 �2.50166 �3.45685� i0.89636

0.8 �6.26723 �6.27187� i0.01264 �2.76286 �3.69595� i0.91945

1.2 �8.83741 �8.83384+i0.00797

1.5 �7.19973 �7.19325� i0.06000

1.8 �1.00831 �0.45305+i0.29300 �4.54283 �5.02325+i0.33375

2.0 �0.87457 �0.40579+i0.25860 �2.84041 �1.64269+i0.31699

2.5 �0.66633 �0.32207+i0.20095

Table 11
Eigenvalues KðO,MÞ, as a function of Mach number M¼U0=c on the axis of the duct for dimensionless frequency O¼ 2:0 and impedance walls with specific

impedance Z ¼ 1þ i, for the even E1(y) and odd F1(y) modes, in the case III of horizontal wavevector parallel to the mean flow velocity. For comparison, the

first eigenvalues for rigid walls are also shown.

M Even modes E(y) Odd modes F(y)

Rigid walls Impedance walls Rigid walls Impedance walls

0.1 1.87372 2.08190+i0.37733 1.10167 1.16630� i0.96763

0.3 1.65655 1.83899+i0.30025 0.87143 1.02710� i0.86061

0.5 1.47623 1.63098+i0.23345 0.69747 0.89740� i0.74216

0.7 0.57006 0.78228� i0.63383

0.8 0.51983 0.73114� i0.58637
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both for the even and odd modes in the case III of horizontal wavevector parallel to the mean flow velocity i.e. downstream
propagation (Figs. 18 and 19) and also anti-parallel i.e. upstream propagation (Figs. 20 and 21). In the latter case II of upstream
propagation in a subsonic flow the first even eigenfunction (Fig. 20) has amplitude increasing towards the wall at low Mach
numbers and decreasing at higher Mach numbers; for the first odd eigenfunction (Fig. 21) the amplitude increases
monotonically towards the wall at low Mach numbers, but an inflexion appears at intermediate distance at higher Mach
numbers, still subsonic. The phase increases towards the wall both for the first even (Fig. 20) and odd (Fig. 21) eigenfunction
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the flow region.
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for upstream propagation in a subsonic flow. In the case of supersonic flow phase jumps may occur both for the even (Fig. 22)
and odd (Fig. 23) eigenfunctions, corresponding to nodes, implying amplitude oscillations.
10. Discussion

The acoustics of shear flows is of considerable importance in connection with the noise of shear layers and boundary layers
in free and ducted flows, in applications as diverse as aircraft engines and environmental issues. The practical needs of
calculation of the acoustics of shear flows have led to a vast literature concentrating on numerical and approximate analytical
solutions. While these serve the basic needs of noise estimation, they do not generally clarify the fundamental mechanisms of
interaction between sound and vorticity. The simplest description of the latter is the acoustic wave equation in an
unidirectional shear flow, for which only a few exact solutions are known. The most extensively studied case is a linear
velocity profile, for which four methods have been used: (i) solution in terms of parabolic cylinder functions [80]; (ii) use of
Whittaker functions [81,82]; (iii) the latter may be replaced by confluent hypergeometric functions [83–85]; (iv) separation
into even and odd functions relative to the critical level [86]. The linear velocity profile leads to an infinite velocity at infinity;
this can be avoided matching to an uniform stream, e.g. to form a boundary layer or shear layer. The ‘kink’ or angular point of
the velocity at the junction(s) of the linear and uniform velocity profiles leads to a discontinuous vorticity in the mean flow,
jumping from constant to zero.
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The hyperbolic tangent profile leads to a finite velocity at infinity and a smooth vorticity profile decaying to zero at infinity;
it has been used to study the acoustics of shear layers [90]. The exponential velocity profile applies to a boundary layer with
wall suction [94]; it has been used to study the acoustics of boundary layers [89]. The preceding three cases of exact solution
of the acoustic wave equation in a plane unidirectional shear flow assume homentropic conditions; thus temperature, density
or sound speed gradients are excluded. An arbitrary temperature profile (and related density and sound speed profiles)
transverse to the streamlines is allowed for an isentropic non-homentropic unidirectional shear flow; the case of an
homenergetic (i.e. constant stagnation enthalpy) unidirectional shear flow which is non-isothermal, together with a linear
velocity profile, appears to be the only exact solution for a non-homentropic flow [87]. It has been extended to include a sound
source outside the non-isothermal boundary layer [88]. The present paper presents the fifth case of exact solution of the
acoustic wave equation in a shear flow, namely a parabolic flow representing one aspect of acoustics; the latter is the subject
of an extensive literature.

The present paper thus concerns the exact solution of the acoustic wave equation in a parabolic shear flow; by exact it is
meant that it applies to all frequencies, ranging from the high-frequency ray theory to the low-frequency scattering
approximation, including the most significant intermediate case of comparable lengthscales of sound and mean flow, when
the acoustic-vortical interaction is strongest. The latter aspect is the main subject of the present paper, and has both well-
known and lesser known aspects. The well-known aspects include that the acoustic wave equation in a unidirectional shear
flow, together with boundary conditions at the walls of the duct, leads to a boundary-value problem which is not of the
Sturm–Liouville type. Thus there is no assurance about that (i) an infinite number of eigenvalues exists and (ii) the
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corresponding eigenfunctions form a complete orthogonal set. It follows that standard modal decomposition methods do not
apply. This does not prevent an exact analysis of the acoustics of a parabolic shear flow including boundary conditions at the
walls, using the alternative method of series solutions. The latter can be applied at and across the singularities of the wave
equation, which are critical levels where the Doppler shifted frequency vanishes, and wave absorption or transformation
can occur.

The conclusions of the detailed analysis of the problem for the full range of parameters are not repeated here; they lead to a
general conjecture which is worth mentioning: there is no single set of eigenvalues and eigenfunctions for sound is a ducted
shear flow with critical levels. The duct is divided by the critical levels into regions with separate sets of eigenvalues and
eigenfunctions. The conjecture has been confirmed in all cases considered: (i) if there are no critical levels in the duct (cases II
and III in Sections 5 and 6) there is, as usual, a single set of eigenvalues and eigenfunctions (Fig. 24); (ii) if the critical level lies
on the axis (case I in Section 4) then by symmetry there must again exist a single set of eigenvalues and eigenfunctions
(Fig. 24); (iii) if there are two critical levels in the duct (case IV in Section 5) then (Fig. 25): (a) by symmetry the eigenvalues
must be the same in the outer regions near the walls �Loyo�jycj and jycjoyoL; (b) it has been proved (Section 8 and
Appendix B) that the eigenvalues must be distinct in the region around the axis�jycjoyo jycj. Since the eigenvalues are the
axial wavenumbers k, they are distinct in regions (a) and (b); they are not independent because they are related by the
matching of the total wavefield across the critical levels. The matching across the singularities at the critical levels can lead to
wave absorption, reflection, or transformation between the different regimes of acoustic propagation.
Appendix A. Logarithmic solution in the neighbourhood of the critical level(s)

Reconsider the solution of the wave equation (60) as a Frobenius–Fuchs series equation (61), in the neighbourhood of the
critical layer x¼ 0 for which the indicial equation (63) has two roots s¼ 0,3 differing by an integer. The larger root s¼ 3
corresponds to a power series:

R3ðxÞ ¼
X1
n ¼ 0

enð3Þx
nþ3, (A.1)

where the recurrence formula equation (62):

s¼ 3 : ðnþ3Þnenð3Þ ¼ ðnþ2Þðn�1=2Þen�1ð3Þþaen�2ð3Þ�aben�4ð3Þ (A.2)

determines all coefficients en (3) with n¼ 1,2,y, starting from e0(3). For the lower root the recurrence formula equation (62):

s¼ 0 : nðn�3Þenð0Þ ¼ ðn�1Þðn�7=2Þen�1ð0Þþaen�2ð0Þ�aben�4ð0Þ, (A.3)

applies for n43. For n¼ 1,2,3 in both cases hold

ðsþ1Þðs�2Þe1ðsÞ ¼ sðs�5=2Þe0ðsÞ, (A.4a)

ðsþ2Þðs�1Þe2ðsÞ ¼ ðsþ1Þsðs�3=2Þe1ðsÞþae0ðsÞ, (A.4b)

ðsþ3Þse3ðsÞ ¼ sðsþ2Þðs�1=2Þe2ðsÞþae1ðsÞ: (A.4c)
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Fors¼ 0 then e1ðsÞ ¼ 0 by Eq. (A.4a), so e2ðsÞ depends only on e0ðsÞ by Eq. (A.4b). Also e3ðsÞ is arbitrary in Eq. (A.4c). Thus the
second solution:

g0ðxÞ ¼
X1
n ¼ 0

enð0Þx
n
¼
X1
n ¼ 3

enð0Þx
n
¼
X1
n ¼ 0

enþ3ð0Þx
nþ3
¼ g4ðxÞ, (A.5)

coincides with Eq. (A.1), since enþ3ð0Þ ¼ enð3Þ; the latter relation follows noting that the substitution n-nþ3 transforms
Eq. (A.3) to Eq. (A.2). Thus the two solutions coincide, and a new linearly independent solution is needed.

To obtain the latter, note that, if the recurrence relation Eq. (62) is satisfied, and Eq. (61) is substituted in the differential
equation (60), one obtains

ð1�xÞxR00 þð32x�2ÞRuþaxðx2b�1ÞR¼ jðsÞ, (A.6)

where

jðsÞ � sðs�3Þe0; (A.7)

thus the differential equation (60) is satisfied by Eq. (A.6) provided that jðsÞ ¼ 0 i.e. s¼ 0,3, which gives the solutions R3, R0. If
e0 is replaced by e0 ¼ Cs then Eq. (A.7) is replaced by

jðsÞ ¼ Cs2ðs�3Þ; (A.8)

the differential equation (60) is satisfied by RsðxÞwiths¼ 0,3 i.e. the coincident solutions and R3 ¼ R0 (Eq. (A.5)), and also by a
new solution:

R0ðxÞ ¼ lim
s-0

q
qs fRsðxÞg (A.9)

Recalling Eq. (61), viz.:

R0ðxÞ ¼ lim
s-0

q
qs
X1
n ¼ 0

enðsÞxnþs
¼ logx

X1
n ¼ 1

enð0Þx
n
þ
X1
n ¼ 0

enu ð0Þx
n, (A.10)

it follows that this solution is linearly independent from the preceding.
The solution equation (A.10) consists

R0ðxÞ ¼ R3ðxÞlogxþR�ðxÞ (A.11)

of Eq. (A.1) multiplied by a logarithm, and adds a series equation (A.12a):

R�ðxÞ ¼
X1
n ¼ 1

fnð0Þx
n, (A.12a)

fnðsÞ ¼ enu ðsÞ, (A.12b)

with coefficients equation (A.12b). The solution equations (A.11), (A.12a) coincide with Eq. (65), and has coefficients fn (0); the
first of these can be obtained from Eqs. (A.4b) and (A.4c) with e0 ¼ Cs by using Eqs. (A.12b), viz:

f0ð0Þ ¼ C, (A.13a)

f1ð0Þ ¼ 0, (A.13b)

f2ð0Þ ¼ �aC=2, (A.13c)

f3ð0Þ ¼ �
e3ð0Þ

3
�

f2ð0Þ

3
¼

2aC

9
: (A.13d)

Differentiating Eq. (62) with regard to s leads to

ðnþsÞðnþsþ3Þenu ðsÞ ¼ ðnþs�1Þðnþs�7=2Þen�1u ðsÞþaen�2u ðsÞ�aben�4u ðsÞ�ð2nþ2sþ3ÞenðsÞþð2nþ2s�9=2Þen�1ðsÞ;
(A.14)

setting s¼ 0 specifies the recurrence relation for fn(0), viz.:

nðnþ3Þfn ¼ ðn�1Þðn�7=2Þfn�1þafn�2�abfn�4�ð2nþ3Þenþð2n�9=2Þen�1: (A.15)

This completes the specification of the complementary function equation (A.12a), and specifies Eqs. (69a) the acoustic
pressure and velocity at the critical level, viz. the former is finite and non-zero equation (A.13a), and the latter is zero
equation (A.13b).
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Appendix B. Relation between the three pairs of solutions and separation of sets of eigenfunctions and eigenvalues by
critical levels

The critical levels lie in the duct for 0oLo1, and in the case 0oLr1=2 the whole flow region can be covered with two
pairs of solutions. Using these, it was shown in Section 8 that there is not a single set of eigenvalues and eigenfunctions
covering the whole duct, as in Fig. 24; instead, as in Fig. 25, there are three sets of eigenvalues and eigenfunctions, in three
regions separated by the critical levels and the walls. These conclusions hold whenever the critical levels exist, i.e. also for
1=2oLo1. In the latter case the three pairs of solutions are needed to construct the eigenvalues and eigenfunctions in each
region; also, the statement that there is no single set of eigenvalues and eigenfunctions covering the whole duct, also applies
in this case. The proof, which is given in the sequel, is somewhat more involved than in Section 8, because the three (instead of
two) pairs of solutions have to be used.
Fig. 24. Single system of eigenvalues, for even E and odd F eigenfunctions, valid across the whole duct, when there is no critical level, or only one critical level

exists on the axis.

Fig. 25. Conjecture that, if two critical levels are present, there may be a distinct set of eigenvalues and eigenfunctions E, F in three regions: E0, F0 between the

critical levels y¼ 7 jyc j, and E7 , F7 between the critical levels and the walls y¼ 7L.
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A linearly independent pair of solutions is specified: (i) in 0r jyjrJycj by Eqs. (74); (ii) using Eqs. (66) and (70a) yields

EðyÞ

FðyÞ

" #
¼

C12 ðC11�ipC12Þ

C22 ðC21�ipC22Þ

" #
XðyÞ

WðyÞ

" #
, (B.1)

for jycjo jyjoy� in Eq. (71b); (iii) Eqs. (72) gives

EðyÞ

FðyÞ

" #
¼

C12 ðC11�ipC12Þ

C22 ðC21�ipC22Þ

" #
B12 ðB11�ipB12Þ

B22 ðB21�ipB22Þ

" #�1
TðyÞ

SðyÞ

" #
, (B.2)

for jy�o jyjo jy��j4L. The latter solution applies at the walls y¼ 7L, so that the boundary conditions can be applied, e.g.
hard-wall boundary conditions:

0¼
EuðLÞ

FuðLÞ

" #
¼

C12 ðC11�ipC12Þ

C22 ðC21�ipC22Þ

" #
B12 ðB11�ipB12Þ

B22 ðB21�ipB22Þ

" #�1
T uðLÞ

SuðLÞ

" #
: (B.3)

Note that, because the system equations (72) are invertible, the inverse B-matrix in Eqs. (B.2) and (B.3) exists.
Noting that the order of the product of two matrices can be inverted, if all matrices are transposed, the system equation

(B.3) becomes

0¼
B12 B22

ðB11�ipB12Þ ðB21�ipB22Þ

" #�1
C12 C22

ðC11�ipC12Þ ðC21�ipC22Þ

" #
SuðLÞ

T uðLÞ

" #
: (B.4)

Since the B-matrix has an inverse, the transpose B-matrix also has inverse, and multiplying by the latter, Eq. (B.4) becomes

C12 C22

ðC11�ipC12Þ ðC21�ipC22Þ

" #
SuðLÞ

T uðLÞ

" #
¼ 0, (B.5)

where the C11, C12, C21, C22 come from Eqs. (74) and are all real:

C12SuðLÞþC22T uðLÞ ¼ 0¼ C11SuðLÞþC21T uðLÞ: (B.6)

Now SuðLÞ ¼ 0¼ T uðLÞ cannot vanish simultaneously, otherwise the Wronskian of S, T(y) would vanish, and they would not be
linearly independent solutions. Thus one has

C12C21 ¼ C11C22 (B.7)

implying that Eqs. (74) is not invertible. Thus a contradiction has been obtained, which is that there is no single set of
eigenvalues and eigenfunctions covering the whole flow region. The preceding proof assumes real wavenumber and hard
walls. It could be invalidated for complex wavenumbers, associated with impedance walls or a stability study. For a real
wavenumber, it possible to specify sets of eigenvalues and eigenfunctions in regions separated by critical levels, viz. using
Eqs. (74) for jyjo jycj, and Eqs. (72) in jyj4 jycj. The conclusion could be quite different in the framework of stability analysis,
[101,102] in which the frequency is taken to be complex, allowing temporal growth or decay.

References

[1] M.E. Goldstein, Aeroacoustics, McGraw-Hill, 1976.
[2] D.G. Crighton, Acoustics as a branch of fluid mechanics, Journal of Fluid Mechanics 106 (1981) 261–298.
[3] A.P. Dowling, J.E.F. Williams, Sound and Sources of Sound, Ellis Horwood Limited, 1983.
[4] W.K. Blake, Mechanics of Flow-Induced Sound and Vibration, Academic Press, 1986, (2 vols.).
[5] L.M.B.C. Campos, On waves in gases. Part I: Acoustics of jets, turbulence, and ducts, Reviews of Modern Physics 58 (1) (1986) 117–182.
[6] L.M.B.C. Campos, On the spectra of aerodynamic noise and aeroacoustic fatigue, Progress in Aerospace Sciences 33 (1997) 353–389.
[7] L.M.B.C. Campos, On some recent advances in aeroacoustics, International Journal of Sound and Vibration 11 (2005) 27–45.
[8] L.M.B.C. Campos, On 36 forms of the acoustic wave equation in potential flows and inhomogeneous media, Applied Mechanics Reviews 60 (4) (2007)

149–171.
[9] G. Raman, Jet Aeroacoustics, Multi Science Publishing, 2008.

[10] L.M.B.C. Campos, W. Schroder, Combustion noise, International Journal of Aeroacoustics 8 (2009) 1–176.
[11] E.W. Graham, B.B. Graham, Effect of a shear layer on plane waves of sound in a fluid, Journal of the Acoustical Society of America 46 (1) (1969) 169–175.
[12] T. Balsa, The far-field of high-frequency convected, singularities in shear flows with application to jet noise prediction, Journal of Fluid Mechanics 74

(1976) 193–208.
[13] T. Balsa, Refraction and shielding of sound from a source in a jet, Journal of Fluid Mechanics 76 (1976) 443–456.
[14] L.M.B.C. Campos, The spectral broadening of sound in turbulent shear layers. Part 1: the transmission of sound through turbulent shear layers, Journal

of Fluid Mechanics 89 (1978) 723–749.
[15] L.M.B.C. Campos, The spectral broadening of sound in turbulent shear layers. Part 2: the spectral broadening of sound and aircraft noise, Journal of Fluid

Mechanics 89 (1978) 751–783.
[16] M.E. Goldstein, Scattering and distortion of the unsteady motion on transversely sheared mean flows, Journal of Fluid Mechanics 91 (4) (1979) 601–632.
[17] M.E. Goldstein, High frequency sound emission from moving point multipole sources embedded in arbitrary transversely sheared mean flows, Journal

of Sound and Vibration 80 (4) (1982) 499–522.
[18] M.E. Goldstein, S.J. Leib, The aeroacoustics of slowly diverging supersonic jets, Journal of Fluid Mechanics 600 (2008) 291–337.
[19] C.K.W. Tam, K. Viswanathan, K.K. Ahuja, J. Panda, The sources of jet noise: experimental evidence, Journal of Fluid Mechanics 615 (2008) 253–292.
[20] D.J. Bodony, S.K. Lele, Low frequency sound sources in high-speed turbulent jets, Journal of Fluid Mechanics 617 (2008) 231–253.



L.M.B.C. Campos, J.M.G.S. Oliveira / Journal of Sound and Vibration 330 (2011) 1166–11951194
[21] M.K. Myers, S.L. Chuang, Uniform asymptotic approximations for duct acoustic modes in a thin boundary-layer flow, AIAA Journal 22 (1983)
1234–1241.

[22] D.B. Hanson, Shielding of prop-fan cabin noise by the fuselage boundary-layer, Journal of Sound and Vibration 92 (4) (1984) 591–598.
[23] L.M.B.C. Campos, Effects on acoustic fatigue loads of multiple reflection between a plate and a turbulent wake, Acustica 76 (1992) 109–117.
[24] L.M.B.C. Campos, On the correlation of acoustic pressures induced by a turbulent wake on a nearby wall, Acustica 82 (1) (1996) 9–17.
[25] L.M.B.C. Campos, A. Bourgine, B. Bonomi, Comparison of theory and experiment on aeroacoustic loads and deflections, Journal of Fluids and Structures

13 (1) (1999) 3–35.
[26] B. Liu, Noise radiation of aircraft panels subjected to boundary layer pressure fluctuations, Journal of Sound and Vibration 314 (3–5) (2008) 693–711.
[27] S. Park, G.C. Lauchle, Wall pressure fluctuation spectra due to boundary-layer transition, Journal of Sound and Vibration 319 (3–5) (2009) 1067–1082.
[28] E. Dokumaci, On attenuation of plane sound waves in turbulent mean flow, Journal of Sound and Vibration 320 (4–5) (2009) 1131–1136.
[29] D.H. Tack, R.F. Lambert, Influence of shear flow on sound attenuation in lined ducts, Journal of the Acoustical Society of America 38 (1965) 655–666.
[30] P. Mungur, G.M.L. Gladwell, Acoustic wave propagation in a shear flow contained in a duct, Journal of Sound and Vibration 9 (1) (1969) 28–48.
[31] P. Mungur, H.E. Plumblee, Propagation and attenuation of sound in a soft-walled annular duct containing a sheared flow, SP 207, NASA, 1969.
[32] A.S. Hersh, I. Catton, Effect of shear flow on sound propagation in rectangular ducts, Journal of the Acoustical Society of America 50 (3) (1970) 992–1003.
[33] S. Mariano, Effect of wall shear layers on the sound attenuation in acoustically lined rectangular ducts, Journal of Sound and Vibrations 19 (1971)

261–275.
[34] W. Eversman, Effect of boundary layer on the transmission and attenuation of sound in an acoustically treated circular duct, Journal of the Acoustical

Society of America 49 (5) (1970) 1372–1380.
[35] P.N. Shankar, On acoustic refraction by duct shear layers, Journal of Fluid Mechanics 47 (1971) 81–91.
[36] P.N. Shankar, Acoustic reffraction and attenuation in cylindrical and annular ducts, Journal of Sound and Vibration 22 (1972) 233–296.
[37] P.N. Shankar, Sound propagation in shear layers, Journal of Sound and Vibration 40 (1972) 51–76.
[38] S.-H. Ko, Sound attenuation in lined rectangular ducts with flow and its application to the reduction of aircraft engine noise, Journal of the Acoustical

Society of America 50 (6) (1971) 1418–1432.
[39] W. Eversman, R.J. Beckemeyer, Transmission of sound in ducts with thin shear layers—convergence to the uniform case, Journal of the Acoustical Society

of America 52 (1) (1972) 216–220.
[40] A.H. Nayfeh, J.E. Kaiser, D.P. Telionis, Acoustics of aircraft engine-duct systems, AIAA Journal 13 (2) (1975) 130–153.
[41] M.A. Swinbanks, The sound field generated by a source distribution in a long duct carrying sheared flow, Journal of Sound and Vibration 40 (1) (1975)

51–76.
[42] R. Mani, Sound propagation in parallel sheared flows in ducts: the mode estimation problem, Proceedings of the Royal Society of London Series A 371

(1980) 393–412.
[43] S. Ishii, T. Kakutani, Acoustic waves in parallel shear flows in a duct, Journal of Sound and Vibration 113 (1) (1987) 127–139.
[44] G.G. Vilenski, S.W. Rienstra, On hydrodynamic and acoustic modes in a ducted shear flow with wall lining, Journal of Fluid Mechanics 583 (2007) 45–70.
[45] G.G. Vilenski, S.W. Rienstra, Numerical study of acoustic modes in ducted shear flow, Journal of Sound and Vibration 307 (2007) 610–626.
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